On Gorenstein Projective, Injective and Flat Dimensions — a Functorial Description with Applications
نویسنده
چکیده
Gorenstein homological dimensions are refinements of the classical homological dimensions, and finiteness singles out modules with amenable properties reflecting those of modules over Gorenstein rings. As opposed to their classical counterparts, these dimensions rarely come with practical and robust criteria for finiteness, even over commutative noetherian local rings. Indeed, over such a ring (R,m, k), projectivity of a finitely generated module M is equivalent to ExtR(M, k) = 0, while verification of socalled Gorenstein projectivity a priori requires computation of infinitely many cohomology groups: ExtmR (M,R) and Ext m R (HomR(M,R), R). In this paper we vastly enlarge the class of rings known to admit good criteria for finiteness of Gorenstein dimensions: It now includes, for instance, the rings encountered in commutative algebraic geometry and, in the noncommutative realm, k–algebras with a dualizing complex.
منابع مشابه
Gorenstein flat and Gorenstein injective dimensions of simple modules
Let R be a right GF-closed ring with finite left and right Gorenstein global dimension. We prove that if I is an ideal of R such that R/I is a semi-simple ring, then the Gorensntein flat dimensnion of R/I as a right R-module and the Gorensntein injective dimensnnion of R/I as a left R-module are identical. In particular, we show that for a simple module S over a commutative Gorensntein ring R, ...
متن کاملStrongly Gorenstein projective , injective and flat modules
Let R be a ring and n a fixed positive integer, we investigate the properties of n-strongly Gorenstein projective, injective and flat modules. Using the homological theory , we prove that the tensor product of an n-strongly Gorenstein projective (flat) right R -module and projective (flat) left R-module is also n-strongly Gorenstein projective (flat). Let R be a coherent ring ,we prove that the...
متن کاملA Brief Introduction to Gorenstein Projective Modules
Since Eilenberg and Moore [EM], the relative homological algebra, especially the Gorenstein homological algebra ([EJ2]), has been developed to an advanced level. The analogues for the basic notion, such as projective, injective, flat, and free modules, are respectively the Gorenstein projective, the Gorenstein injective, the Gorenstein flat, and the strongly Gorenstein projective modules. One c...
متن کاملGorenstein projective objects in Abelian categories
Let $mathcal {A}$ be an abelian category with enough projective objects and $mathcal {X}$ be a full subcategory of $mathcal {A}$. We define Gorenstein projective objects with respect to $mathcal {X}$ and $mathcal{Y}_{mathcal{X}}$, respectively, where $mathcal{Y}_{mathcal{X}}$=${ Yin Ch(mathcal {A})| Y$ is acyclic and $Z_{n}Yinmathcal{X}}$. We point out that under certain hypotheses, these two G...
متن کاملn-Strongly Gorenstein Projective, Injective and Flat Modules
In this paper, we study the relation between m-strongly Gorenstein projective (resp. injective) modules and n-strongly Gorenstein projective (resp. injective) modules whenever m 6= n, and the homological behavior of n-strongly Gorenstein projective (resp. injective) modules. We introduce the notion of n-strongly Gorenstein flat modules. Then we study the homological behavior of n-strongly Goren...
متن کامل